Towards a Systematic Design of Fault-Tolerant Asynchronous Circuits

نویسندگان

  • Ulrich Schmid
  • Andreas Steininger
  • Helmut Veith
چکیده

Accommodating billions of transistors on a single die, VLSI technology has reached a scale where principal physical limitations have a strong impact on design principles. Among the particular challenges are maintaining the synchronous clock abstraction in settings where wiring delays dominate over switching delays, and coping with increasing transient failure rates. In an attempt to address some of these challenges, we recently developed a clocking scheme called DARTS1. The cornerstone of this approach is a distributed fault-tolerant Tick Generation (TG) unit that implements an adaptation of a faulttolerant clock synchronization algorithm originally developed in the distributed computing context [1]. Each functional unit on the chip is augmented with a dedicated TG unit here that generates its clock signal. Since all these TG units communicate with each other (by exchanging their clock signals), all non-faulty TG units actually supply mutually synchronized clock signals to their attached functional units [2]. The implementation of the TG units [3] required a design process that was quite different from the traditional one: First, the TG circuitry dedicated to generating the chip’s clock signals naturally mandated an implementation in asynchronous logic. Second, our fault-tolerance requirements made it necessary to cope with lost/faulty clock signal transitions, which rendered a delay-insensitive approach impossible. And last but not least, we had to bridge the gap between the highlevel distributed algorithm’s view with its mathematical proofs, and the low-level VLSI implementation with its tool-based verification techniques. This paper (resp. its extended version [4]) lays down the cornerstones of a design process suitable for fault-tolerant asynchronous (FASY) circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit

Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...

متن کامل

Fault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit

Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007